
PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 1

A Survey on SEDA and Using SEDA to Optimize
HDFS Read Operation

Isuru Suriarachchi, School of Informatics and Computing, Indiana University

Abstract—Handling high concurrency is a critical issue in
almost all internet services. A web server is a perfect example
where a large amount of concurrent users are served by managing
limited resources. There has been number of different architec-
tures proposed to optimize the resource usage and maximize the
throughput in such applications. Thread-per-request model and
event-driven model are two heavily used such architectures. In
2001, Welsh et al. [1] pointed out the performance issues in those
two architectures under high concurrency and proposed Staged
Event Driven Architecture (SEDA) to address the issues. SEDA
uses a hybrid of thread pools and eventing concept to utilize
the advantages of both techniques. Since the introduction, there
have been number of applications of SEDA in highly concurrent
systems. In this paper, first we present few most interesting
applications of SEDA selected through a survey. Then we discuss
SOR-HDFS [2] which is an application of SEDA to improve HDFS
Write operation. There we try to highlight the shortcomings and
restrictions as well in SOR-HDFS design. Finally we present a
design to use SEDA for HDFS Read operation and discuss how
it improves read performance.

Keywords—SEDA, Concurrency, Throughput, SOR-HDFS,
HDFS Write, HDFS Read.

I. INTRODUCTION

W ITH the rapidly increasing usage of internet based ser-
vices, millions of user requests hit the service hosting

servers every minute. For example, the incoming traffic for e-
commerce sites like Amazon and eBay on a thanksgiving day
is enormous. It is a huge challenge for a internet service to
handle this large amount of requests while preserving the must
have qualities like high availability, low latency and robustness.
This problem cannot be addressed only by increasing the
amount of compute resources. Therefore, researchers have
come up with different architectures for highly concurrent
applications to optimize the resource utilization and increase
the throughput.

One of the most common techniques used in internet
services is the thread-per-request model associated with a
bounded thread pool. This design uses a fixed size thread pool
which is initialized on application start-up. Each incoming
request gets a thread from the thread pool and keeps the
thread for the entire duration of the request. Assigned thread
is released back to the thread pool when the request is served.
Number of popular Web Servers and Application Servers like
Apache HTTP server [3], IIS [4], Apache Tomcat [5] and IBM
WebSphere [6] have been using this design for a long time.
However, the limitation of this design is that it starts to drop
connections when all the available threads are busy. This can
happen under heavy loads. Therefore, requests tend to queue

up in the network and client applications might have to retry
to establish a connection.

Event-driven model is another approach for handling high
concurrency. Most of the time, this model uses a limited
number of threads that loop continuously. And there is an event
queue which contains events (processing requests) submitted
by the sub components of the system. Continuous threads
pick the events from the queue and process one after the
other. This model does not drop excess requests like the thread
pool model. All requests are queued as events and processed
when they reach the top of the queue. This model is used
by Web Servers like thttpd [7] and Flash [8]. Event-driven
model generally shows better robustness due to usage of event
queues. However, it provides less throughput and blocked event
handling threads can cause severe performance issues.

In 2001, Welsh et al. [1] pointed out the limitations and
performance issues in above two architectures under high
concurrency and proposed Staged Event Driven Architecture
(SEDA) to address the issues. SEDA combines the power
of threading model with the robustness provided by event
queues. In SEDA architecture, an application is decomposed
into number of stages which are connected by event queues.
A stage has its own thread pool and each thread picks up a set
of events from the input queue and writes the output as events
to one or more output queues after processing. In addition to
that, each stage has a dynamic resource controller which can
adjust the resources allocated for the stage according to load
at a given time.

Since the introduction, there has been number of applica-
tions which use the SEDA architecture both in industry and
research prototypes. Apache Cassandra [9] [10] is a NoSQL
store which uses SEDA for its message processing pipeline.
Being an open source project, Cassandra is used by number of
major projects to handle large volumes of data including big
companies like Twitter and Netflix. Cassandra is one of the
best examples which proves the ability of SEDA to handle high
concurrency levels. Amazon Dynamo [11] is another key-value
store where high availability is considered a must with massive
incoming loads. Mule Enterprise Service Bus [12] is also an
open source project which uses SEDA in its internal message
processing architecture. Apache Mina [13] is an open source
network application framework which uses SEDA. In addition
to those, there are plenty of research publications which
uses SEDA to implement prototypes. Two good examples are
Tapestry [14] peer-to-peer routing infrastructure and BGPMon
[15]. We will be discussing these applications of SEDA in
more detail in section III.

SOR-HDFS [2] is a recent application of SEDA to improve
HDFS Write operation. When executing the Write operation,



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 2

a data block is transferred as packets from clients to HDFS
DataNodes. DataNodes accept the packets and use a single
thread for each block to persist data. This is called One-Block-
One-Thread (OBOT) architecture. SOR-HDFS applies SEDA
to improve performance of Write operation by identifying
major stages in the Write process and separating them. Later
we try to evaluate and discuss this design and identify the
shortcomings.

As the main contribution of this paper, we present a SEDA-
based architecture for HDFS Read operation. We looked into
all other HDFS block operations like Replace, Copy and
Transfer. But the frequency of those operations compared to
Write and Read operations is very low. And also, SEDA is
designed to improve performance under high loads. Therefore,
applying SEDA for less frequent operations will over compli-
cate the system without showing a considerable improvement.
As pointed out in SOR-HDFS, default HDFS DataNode uses
the OBOT architecture for all operations. Therefore the entire
Read process is carried out using a single thread. Each request
to read a block goes through number of steps. Access verifi-
cation, waiting for ongoing writes, reading block metadata,
sending status responses, creating packets by reading the disk
and writing packets to output socket are the main steps in
the default HDFS Read operation. In our new design, we
separate these steps into different SEDA stages to optimize
read performance. We identify the steps in which the threads
consume more time and carefully design the sages to minimize
the back pressure under high loads.

Remainder of the paper is organized as follows. In section
II we discuss SEDA and SOR-HDFS in more details to set
the background. Then we present the results of our survey on
SEDA and go through 5 of the most interesting applications
of SEDA in section III. Then in section IV we present
our thoughts on SOR-HDFS and discuss the limitations and
restrictions of the design. Finally in section V we present our
SEDA-based design to improve performance of HDFS Read
operation and conclude in section VI.

II. BACKGROUND

A. Staged Event-Driven Architecture
As pointed out earlier, thread-per-request architecture with

bounded thread pools works well for average loads. But it
starts to drop connections and show very high response times
under heavy loads. Event-driven model is robust, but can show
very low throughput when worker threads block. Staged Event-
Driven Architecture (SEDA) has been designed to address
these issues by combining the powerful features of both these
models. SEDA splits an application into a chain of stages
which are connected by event queues. SEDA uses dynamic
resource controllers associated with each stage to dynamically
control the resource allocation depending on the load. There
are four very important properties of SEDA.

• Support massive concurrency: SEDA supports massive
concurrency by incorporating event queues to avoid
performance degradations due to busy threads. This
combination of events and threads makes sure that the
system is robust under high loads.

Fig. 1. A stage in SEDA

• Support load conditioning: Load conditioning is the
property which makes sure that the throughput of the
application is kept constant even under massive loads.
When the application reaches saturation, response time
increases due to queuing delay. But the increase of
response time is linear with the number of requests. This
makes sure that the requests are not rejected and queued
even under heavy loads and eventually severed with only
a linear increase of response time with load.

• Support self-tuning resource management: SEDA is
capable of dynamically adjusting the resource allocation
for each stage using resource controllers. For example,
the size of the thread pool associated with a particular
stage is adjusted dynamically by looking at the number
of events in the incoming queue.

• Ease of engineering: An application developer does not
have to worry about the concurrency when developing
on top of a SEDA enabled framework (like Sandstorm
presented in [1]). Developer just has to carefully identify
the stages of the application and implement the stages
by using the interfaces provided by the framework.

Figure 1 (adapted from [1]) shows the components of
a SEDA stage which is the basic processing unit of the
architecture. A stage consists of an incoming event queue, an
event handler, a thread pool and a controller. A thread in the
thread pool can pull a batch of events from the incoming event
queue and process the batch by invoking the event handler.
Event handler contains the business logic related to the stage.
Upon completion, the results can be written to one or more
event queues for further processing by other stages. Controller
is responsible for dynamically tuning parameters like the size
of the thread pool and number of events included in a single
batch.

A complete application is built by connecting number of
stages using event queues. SEDA provides the flexibility of
executing some stages in parallel as well. And also, at times
the same thread pool can be shared across more than one stage
to improve resource utilization in some applications.



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 3

B. SOR-HDFS
Islam et al. [2] present SOR-HDFS to improve performance

of the HDFS Write operation. In their earlier work, they
propose RDMA-enhanced HDFS [16] [17] which is a solution
for communication overheads in default HDFS using pipelined
and parallel replication schemes. In SOR-HDFS, they try to
further improve the HDFS write performance by proposing
a SEDA-based architecture to replace the One-Block-One-
Thread (OBOT) architecture in default HDFS. To evaluate
both optimizations together, they have implemented the SEDA
based architecture on top of RDMA-enhanced HDFS.

In default HDFS Write operation, data blocks are split into
packets and transferred from clients to DataNodes. When a
DataNode receives a block as a series of packets, it uses a
single thread to write all the packets in the block. This can
cause congestion when all threads become busy due to high
Write traffic. SOR-HDFS applies SEDA to solve this issue by
splitting the Write process into stages. They identify Read,
Packet Processing, Replication and I/O as the four stages in
the process. Each stage is handled by a dedicated thread pool.
Therefore, the Write process overlaps at packet level too in
addition to block level.

Read stage consists of a receiver which supports multiple
endpoints. Different clients can connect to different endpoints.
There is a pool of buffers associated with the Read stage and it
is used to write data received for endpoints. When data arrives
at an endpoint, it is written to a free buffer in the pool. Then
the receiver thread returns the buffer pointer of each packet
to the Process Request Queue in Packet Processing stage. The
Process Request Controller (PRC) in Packet Processing stage
is responsible of assigning a thread from thread pool to each
packet. When a thread picks the header packet of a block, PRC
makes sure that all subsequent packets of the same block are
assigned to the same thread. This preserves the packet order in
a block. Finally the Packet Processing stage aggregates packets
by blocks into an aggregation cache. After processing, packets
are sent to the Replication Request Queue. Replication stage
threads pick packets from the queue and replicates for multiple
endpoints. Finally the I/O stage threads pick packets from I/O
Request queue and flush the aggregated data from the cache
to the disk.

III. SURVEY ON SEDA

We conducted a survey on the applications of SEDA both in
research works and in well known software projects. Here we
present five of the most interesting applications and explain
how SEDA is being used in each of those. Other than those
five, Amazon Dynamo [11] is also an interesting application
of SEDA which handles high concurrency. However, we are
unable to find details on Dynamo architecture as it is a
proprietary software.

A. Apache Cassandra
Apache Cassandra [10] is a NoSQL distributed database

for managing very large amounts of data. Cassandra guar-
antees scalability and high availability without compromising

Fig. 2. SEDA for reads in Cassandra

performance. It is specifically designed as a fault tolerant
framework which can be run on commodity hardware or on
cloud resources. Cassandra was initiated by Facebook and
number of companies like Twitter and Netflix currently use
it to handle large amounts of data.

Cassandra organizes data for a single application in a
keyspace similar to the schema in relational databases. A
keyspace can contain multiple column families. In Cassandra,
total data managed by the cluster is represented by a ring. All
nodes in the cluster participate in the ring and each node stores
a range of row keys. Depending on the replication factor of the
keyspace, there can be multiple replicas of same data stored
in different nodes. To find the node where the first replica of
a row is stored, the ring is traversed clockwise till it locates
the node which contains the correct row key range.

There are number of tasks running inside each node in a
Cassandra cluster. Those tasks include handling read requests,
handling write requests, replication, flushing cached data into
disk, communicating with neighbours etc. Cassandra uses
SEDA to manage these tasks by defining stages and incor-
porating task queues to connect them. Some examples of the
stages running in a Cassandra node are ReadStage, RequestRe-
sponseStage, MutationStage, ReadRepairStage, GossipStage,
Migration Stage and FlushWriter. A complete list of Cassandra
stages can be found in [18]. There are thread pools associated
with each of these stages. Status of these thread pools can
be checked by running the “nodetool tpstats” command on a
Cassandra node.

In Cassandra, all nodes in the cluster are treated equally
and there is no concept of a master node. Therefore, a client
request can hit any node in the cluster. Figure 2 (adapted
from [18]) shows how SEDA based implementation operates
for a read request. This assumes that the request is received
by Node 1 in the diagram and data is stored in Node 2.
After receiving the request, Node 1 enqueues a task on the
ReadStage in Node 2 with a reference to a callback in Node
1. Node 2 ReadStage picks up the task from the queue when
one of the threads in its thread pool becomes free. After
reading the row in Node 2, ReadStage enqueues the result
as a task for RequestResponseStage in Node 1 which returns
the result of the request to the client through the callback.
Finally the RequestResponseStage in Node 1 might trigger an
asynchronous task for the ReadRepairStage which makes sure
that the caches of all replicas for the given row key are written
to the disk.



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 4

Fig. 3. SEDA based component architecture in Mule ESB

B. Mule ESB
Mule Enterprise Service Bus (ESB) is a well known open

source ESB which is used for various kinds of SOA inte-
grations. Mule ESB is used by number of large companies
like Yahoo, Amazon, at&t and Verizon to handle very high
levels of traffic. Some of its heavily used features are Service
Mediation, Service Orchestration, Message Routing and Data
Transformation. The basic processing module in Mule ESB is
called Universal Messaging Object (UMO) component. Mule
ESB comes with a set of default components which can
be used to build service mediation chains. Some examples
are BridgeComponent, LogComponent, PassThroughCompo-
nent and RestServiceWrapper. In addition that, users can im-
plement their own business logic by writing a new component.

In Mule ESB, the components are executed using a SEDA-
based architecture. Figure 3 shows how a message flows
through the ESB in a simple scenario where few components
are used for message mediation. Each component represents a
stage in SEDA and has its own thread pool. Thread pool size
for each component can be configured using the Mule con-
figuration. However, there is no dynamic resource controller
used in Mule ESB to adjust the thread pool size in runtime.
Inbound router (also called the endpoint) acts as the input
event queue. Business logic in each component represents the
Event Handler in SEDA. Whenever a thread in a component
becomes free, it picks up a message from inbound router and
processes it. Outbound router forwards the processed message
to the inbound router of the next component.

C. Apache Mina
Apache Mina [13] is a framework for developing high

performance and highly scalable network applications. Mina
framework provides an even-driven asynchronous API over
number of transports such as TCP and UDP via Java NIO.
Mina uses SEDA architecture to achieve high throughputs
using even-driven model. Mina has been used for building
various network applications like HTTP servers/clients, FTP
servers/clients and SSH servers/clients. Few example sub
projects under Mina are Apache FtpServer [19] and Apache
SSHD [20].

Figure 4 shows the basic architecture of Apache Mina. The
I/O Service listens on the network layer for incoming packets.
When a packet arrives, it just pushes the packet into a queue
and returns. I/O Filter chain is the main extension point in
Mina. Application developers can easily implement filters to
perform any processing steps on incoming packets using Mina

Fig. 4. Apache Mina Architecture

API. The filter chain has been developed using SEDA such
that each filter becomes a stage. Mina framework takes care
of creating message queues between filters. A dedicated thread
pool is associated with each filter and thread pool parameters
can be configured programmatically using Mina Filter API.
After going through the filter chain, a message reaches the
I/O Handler which contains the actual business logic of the
application.

D. Tapestry
Tapestry [14] is a scalable peer-to-peer overlay routing

infrastructure which is built on TCP/IP. It is an implementation
of the Decentralized Object Location and Routing (DOLR)
API [21]. Tapestry can be seen as a resource virtualization
layer which routes messages to endpoints such as nodes or
object replicas. Endpoints are identified by globally unique
identifiers (GUIDs) rather than IP addresses. Therefore, any
message routed by Tapestry is addressed by a GUID. Tapestry
internally routes the message to the physical host which
contains the resource identified by that GUID. Because of
this virtualization, the application which uses Tapestry does
not have to worry about the locations of resources. There are
many network applications which uses Tapestry. OceanStore
[22] persistent data store is a good example.

Tapestry uses SEDA to integrate components in a sin-
gle node targeting high throughput and scalability. Figure 5
(adapted from [14]) shows the SEDA-based node architec-
ture in Tapestry. There are five main components (SEDA
stages) named Core Router, Node Membership, Mesh Repair,
Patchwork and Network Stage. These internal components



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 5

Fig. 5. Internal SEDA-based architecture of a Tapestry node

communicate via events using a subscription model and each
component has an associated thread pool. We do not go into
details of the functionalities of these components as that is
beyond the scope of this paper.

E. BGPMon
BGPMon [15] is a Border Gateway Protocol (BGP) mon-

itoring tool which provides scalable real time monitoring.
BGPMon can connect to large number of peers (mostly
routers) and clients at the same time. Clients can subscribe to
BGPMon system to receive routing information. All routing
events received from peers are serialized into a single XML
stream and sent to all subscribed clients.

BGPMon uses an architecture similar to SEDA for the
routing event pipeline. Figure 6 (adapted from [15]) shows
the BGPMon architecture. Two main stages in the system are
Labelling stage and XML conversion stage. Each peer thread
in BGPMon connects to a router which is being monitored.
Peer threads enqueue all BGP messages received from routers
into the peer queue. Then the messages are processed by the
label thread and the XML thread. Finally the routing results
are serialized as an XML and written to the XML queue. One
difference of this architecture when compared to SEDA is that
the three queues used in BGPMon have fixed length. That can
cause congestion when the routers send large spikes of routing
messages. BGPMon removes a message from XML queue
only after all clients have read it. Therefore, if the incoming
message speed or writing speed is larger than the speed of
slowest reader, system becomes saturated. To overcome this
issue, BGPMon uses two techniques. First one is called pacing
writers where the write speed is controlled by the system when
the queue length exceeds some threshold. Other one is called
dropping slow readers where the system automatically drops
the slowest readers to avoid congestion.

IV. LIMITATIONS OF SOR-HDFS
The evaluations done in [2] using well-known Hadoop

benchmarks and HBase tests shows that SOR-HDFS performs
better compared to default HDFS and RDMA-based HDFS.

Fig. 6. SEDA-based BGPMon Architecture

However there are few limitations in the design which can
lead to some issues under different scenarios compared to the
test clusters used to evaluate SOR-HDFS.

As we discussed earlier, SEDA is designed to maximize
throughput under high loads by making sure all requests
are queued and eventually served by different stages. SOR-
HDFS shows better throughput due to this reason. And also it
might reduce the latency under high loads compared to default
HDFS by avoiding congestion. That is because a congested
OBOT model can drastically increase the latency under high
loads. However, SOR-HDFS should show higher latency under
low and average loads compared to OBOT model. In other
words, non-saturated OBOT model should show lower latency
compared to SOR-HDFS. That is because, in SEDA, a packet
is handled by different threads in different stages. That adds
context switch delay in each stage. And also each packet
is queued between stages. That adds a considerable queuing
delay as well.

SOR-HDFS does not implement dynamic resource con-
trollers proposed in SEDA to control the resource allocation
in runtime. Therefore, the sizes of the thread pools associated
with each stage are constant during the entire runtime. And
also, the thread pool sizes for different stages can depend on
hardware configurations of the cluster. For example, number of
replicator threads depend on the NIC bandwidth and number
of I/O threads depend on whether HDDs or SSDs are used.
Therefore, users always have to tune the thread pool sizes
according to their hardware while deploying the cluster. It
might need some additional tests as well to decide proper
thread pool sizes. In SOR-HDFS evaluation, they explain how
they conducted such tests. This is an extra burden which is
not there in default HDFS and false thread pool sizes can
give very bad throughputs. One other problem with this is that
there can be many network failures and node failures within
an HDFS cluster in runtime as HDFS is designed to run on
commodity hardware. Therefore, initially tuned thread pool
sizes can become non-optimal in runtime after such hardware
failures. Implementing a dynamic resource controller to adjust
thread pool sizes and other parameters according to inter node
communication details is an ideal solution for this kind of
issues.

In packet processing stage and in I/O stage of SOR-HDFS,
if some thread picks the header packet of some block, all the



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 6

Fig. 7. SEDA-based architecture for HDFS Read operation

subsequent packets of the same block have to be picked by
the same thread. This is because the packet order within the
block must be preserved. This reduces the power of completely
overlapped stages proposed in SEDA.

SOR-HDFS is implemented on top of RDMA-based HDFS
[17]. It takes the advantage of RDMA connection objects
which support multiple endpoints in Read stage. It will be
interesting to see how SEDA works on default HDFS which
does not have the option of multiple endpoints per connection.
And also, in SOR-HDFS test clusters they have always set the
Read stage receiver thread count to one because the RDMA
connection creation is more expensive than Socket creation in
default HDFS. This might become a bottleneck in SOR-HDFS
as only single thread is used to receive packets in Read stage.

V. SEDA FOR HDFS READ OPERATION

Here we present a SEDA-based architecture to improve
HDFS Read operation performance under high loads. Our
design is based on the latest HDFS code base [23] which was
released under Apache Hadoop [24] version 2.5.0.

Like the Write operation, default HDFS Read operation
also is implemented using OBOT architecture. When some
HDFS client or a peer node executes a Read command for
a particular block on some DataNode, a thread from the
DataNode server thread pool picks up the request and performs
the entire Read operation. First it reads the HDFS protocol
Read request header to extract all needed parameters like client
name, block Id, block token, block offset etc. Then it performs
an access check to authenticate the client using the block
token. If there is some ongoing write operation for the same
block, the reading thread waits till minimum read length is
written. Then it reads block metadata to set up input streams
for block checksum and block data. Finally the same thread
loops through the data range and creates packets by reading
the disk and writes packets to the output stream.

There are few steps in this read process during which the
read thread goes through severe delays. Best example is the
wait for ongoing writes where the thread may sleep up to
three seconds. And also steps like writing status messages to

output socket, reading data from disk and writing packets to
output socket can experience considerable delays due to I/O
operations. Such waited threads limit the number of available
threads in the DataNode server thread pool. That can lead to
connection drops under high loads and very low throughputs
due to saturation. In our SEDA based architecture, we try to
improve the read throughput under high loads by reducing the
back pressure. We carefully design stages to make sure that
the steps with higher delays are performed by separate stages
to improve the responsiveness of other stages.

Figure 7 shows our new SEDA-based architecture for HDFS
Read operation. After a new connection is accepted by a thread
in the DataNode server thread pool, it reads the command sent
by the client. If the command is a Read, it enqueues a task in
the Read Preparation Stage input queue with pointers to input
and output streams. Server thread is immediately returned back
to the thread pool and this makes the server lot more responsive
under high loads. As shown in Figure 7, there are six stages
in our SEDA-based architecture. Each stage picks up tasks
from its input queue and may enqueue tasks to one or more
other stages. A dedicated thread pool is associated with each
stage with a dynamic resource controller module to control the
thread pool size depending on the queue length.

A. Read Preparation Stage
When a task is received through the input queue, first of

all the HDFS protocol message is processed by the Read
Preparation Stage to extract the parameters sent by the client.
Parameters like block token and client name are found in
message header and other parameters like offset and read
length are found in message body. Then an authentication
step is performed using the block token sent by the client. If
the authentication fails, read operation is aborted and an error
message is enqueued to Status Response Stage with a pointer
to the output stream. If the client is authenticated to execute
the command, Read Preparation Stage thread continues and
checks whether there is an ongoing Write operation which
writes to the same block to be read. In that case, if the
requested read length is not yet available to be read, a task is



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 7

enqueued in the Wait for Writes Stage as the Read operation
must be delayed. Otherwise, a task is enqueued in the Block
Metadata Read Stage and the thread is returned.

B. Status Response Stage
The Status Response Stage is responsible for sending inter-

mediate response messages to the client. Authentication failure
messages and read success messages are examples of such
responses. A task coming into the input queue for this stage
consists of the message to be sent and a pointer to the socket
output stream. Some free thread in the thread pool picks up the
message and writes it into the output stream. As this process
involves socket I/O, having a dedicated stage avoids possible
delays in threads associated with main stages.

C. Wait for Writes Stage
In some cases, the block to be read is still being written by

some other process. HDFS allows a block to be read while it is
being written. However, if the length of bytes requested to be
read by the client is still not available on the disk, reader waits
up to three seconds to have enough data on the disk. The Wait
for Writes Stage is introduced to avoid delays in main stages.
If such scenario is found where the reader has to wait, the
Read Preparation Stage sends a task to the Wait for Writes
Stage. A thread in Wait for Writes Stage picks up the task and
waits in a loop up to three seconds by periodically checking
whether the block to be read has enough bytes on the disk.
If it finds enough bytes or time expires, the thread exits the
loop and enqueues a task in the Block Metadata Read Stage
to continue the read process.

D. Block Metadata Read Stage
The Block Metadata Read Stage is responsible for reading

metadata associated with the block being read. When a thread
in this stage picks up a task, first it reads the metadata stream
and verifies the checksum. Sometimes the user requests the
block checksum to be sent with data packets. In that case, this
stage verifies the checksum and prepares it to be read when
the packets are created. Then it calculates the start offset and
end offset of the data block to be read according to input
parameters. If all client parameters are properly verified, a read
operation success message is sent to Status Response Stage.
Finally a task is enqueued in the input queue of the Packet
Creation Stage.

E. Packet Creation Stage
An HDFS block can consist of number of packets depending

on block size used in the deployment. The Packet Creation
Stage is responsible of creating packets by reading bytes from
start offset to end offset of the block. This stage should be
configured with a relatively higher number of threads under
high loads as it involves disk I/O. The associated resource
controller increases the thread count by looking at the queue
length in such situations. In addition to that, the Packet
Creation Stage consists of a pool of buffers. When a new

packet is created, a free buffer is selected from the pool and
the packet is written to it. Each packet consists of header,
checksum and data sections which are written in order into
the buffer. Once a packet is completely written to the buffer, a
task is enqueued to the Packet Writing Stage with a pointer to
the buffer and the output stream. This process is continued in
a loop until all packets in the block are created. It is important
to note that this stage splits each incoming task to multiple
outgoing tasks as a single block can create number of packets.

F. Packet Writing Stage
The Packet Writing Stage is the last step of the read process

in which the packets are sent to the client. Each incoming task
represents a packet and comes with a pointer to a butter which
consists of packet data. A thread in Packet Writing Stage picks
up the task and reads the packet from the buffer and writes
it to the provided socket output stream. Then the thread waits
for a status message from the client to confirm the receipt of
the packet. This stage uses a bigger thread pool compared to
other stages as a single read generates multiple tasks for this
stage.

VI. CONCLUSION AND FUTURE WORK

In this paper, first we discussed the well-known SEDA ar-
chitecture in detail. We highlighted five of the most interesting
applications which use SEDA to handle highly concurrent
systems. The power of SEDA architecture can be understood
by looking at those applications. Then we went into details of
SOR-HDFS which is a recent application of SEDA to improve
the HDFS Write operation. We discussed the limitations and
restrictions of the SOR-HDFS system as well.

Finally as the main contribution of this paper, we proposed
a SEDA-based architecture to improve performance of HDFS
Read operation. We carefully identified the main stages of
Read operation to improve responsiveness and throughput
under high loads. It will be interesting to implement this model
on HDFS and compare performance with default HDFS as a
future work.

REFERENCES

[1] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for
well-conditioned, scalable internet services,” in Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, ser.
SOSP ’01. New York, NY, USA: ACM, 2001, pp. 230–243. [Online].
Available: http://doi.acm.org/10.1145/502034.502057

[2] N. S. Islam, X. Lu, M. W.-u. Rahman, and D. K. D. Panda, “Sor-hdfs:
A seda-based approach to maximize overlapping in rdma-enhanced
hdfs,” in Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing, ser. HPDC
’14. New York, NY, USA: ACM, 2014, pp. 261–264. [Online].
Available: http://doi.acm.org/10.1145/2600212.2600715

[3] Apache HTTP Server. [Online]. Available: http://httpd.apache.org/
[4] Microsoft IIS. [Online]. Available: http://www.iis.net/
[5] Apache Tomcat. [Online]. Available: http://tomcat.apache.org/
[6] IBM Websphere Application Server. [Online]. Available: http://www-

03.ibm.com/software/products/en/appserv-was
[7] Tiny/Turbo/Throttling HTTP server. [Online]. Available:

http://www.acme.com/software/thttpd/



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 8

[8] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An efficient and
portable web server,” in Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ser. ATEC ’99. Berkeley, CA,
USA: USENIX Association, 1999, pp. 15–15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268708.1268723

[9] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr.
2010. [Online]. Available: http://doi.acm.org/10.1145/1773912.1773922

[10] Apache Cassandra. [Online]. Available: http://cassandra.apache.org/
[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007, pp. 205–220. [Online].
Available: http://doi.acm.org/10.1145/1294261.1294281

[12] Mule ESB. [Online]. Available: http://www.mulesoft.org/
[13] Apache Mina. [Online]. Available: https://mina.apache.org/
[14] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.

Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE J.Sel. A. Commun., vol. 22, no. 1, pp. 41–53, Sep.
2006. [Online]. Available: http://dx.doi.org/10.1109/JSAC.2003.818784

[15] H. Yan, R. Oliveira, K. Burnett, D. Matthews, L. Zhang, and
D. Massey, “Bgpmon: A real-time, scalable, extensible monitoring
system,” in Proceedings of the 2009 Cybersecurity Applications &
Technology Conference for Homeland Security, ser. CATCH ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 212–223.
[Online]. Available: http://dx.doi.org/10.1109/CATCH.2009.28

[16] N. Islam, X. Lu, M. Wasi-Ur-Rahman, and D. Panda, “Can parallel
replication benefit hadoop distributed file system for high performance
interconnects?” in High-Performance Interconnects (HOTI), 2013 IEEE
21st Annual Symposium on, Aug 2013, pp. 75–78.

[17] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda, “High performance
rdma-based design of hdfs over infiniband,” in Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 35:1–35:35. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389044

[18] Guide to Cassandra Thread Pools. [Online]. Available:
http://planetcassandra.org/blog/guide-to-cassandra-thread-pools/

[19] Apache FtpServer. [Online]. Available:
https://mina.apache.org/ftpserver-project/index.html

[20] Apache SSHD. [Online]. Available: https://mina.apache.org/sshd-
project/index.html

[21] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards
a common api for structured peer-to-peer overlays,” in Peer-to-Peer
Systems II, ser. Lecture Notes in Computer Science, M. Kaashoek and
I. Stoica, Eds. Springer Berlin Heidelberg, 2003, vol. 2735, pp. 33–44.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-45172-3 3

[22] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz, “Awarded best student paper! - pond: The oceanstore
prototype,” in Proceedings of the 2Nd USENIX Conference on
File and Storage Technologies, ser. FAST ’03. Berkeley, CA,
USA: USENIX Association, 2003, pp. 1–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1090694.1090696

[23] HDFS 2.5.0 code base. [Online]. Avail-
able: http://svn.apache.org/repos/asf/hadoop/common/tags/release-
2.5.0/hadoop-hdfs-project/

[24] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/


