We extend LVars in two ways. First, we add the ability to "freeze" and then read the contents of an LVar directly. Second, we add the ability to attach event handlers to an LVar, triggering a callback when the LVar's value changes. Together, handlers and freezing enable an expressive and useful style of parallel programming. We prove that in a language where communication takes place through these extended LVars, programs are at worst quasi-deterministic: on every run, they either produce the same answer or raise an error. We demonstrate the viability of our approach by implementing a library for Haskell supporting a variety of LVar-based data structures, together with a case study that illustrates the programming model and yields promising parallel speedup.